RECOGNISING ACHIEVEMENT
GCE

Chemistry A

Advanced Subsidiary GCE

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotations available in Scoris.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
$*$	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\checkmark	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula',

- ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- ALLOW bond drawn to C or H ,
eg ALLOW CH ${ }_{3}-, \mathrm{CH}_{2}-, \mathrm{C}_{3} \mathrm{H}_{7}$-, etc
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- DO NOT ALLOW formula with horizontal - HO OR OH--
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

- DO NOT ALLOW COH

For a 3D structure,

- For bond in the plane of paper, a solid line is expected:	$>$
- For bond out of plane of paper, a solid wedge is expected:	\checkmark
- For bond into plane of paper, ALLOW:	
- ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge eg:	

NAMES

Names including alkyl groups:

- ALLOW alkanyl, eg ethanyl (ie IGNORE 'an')
- DO NOT ALLOW alkol, eg ethol (ie 'an’ is essential)

Names of esters:

- Two words are expected, eg ethyl ethanoate
- ALLOW one word, eg ethylethanoate

Names with multiple numbers and hyphens:
Use of 'e'

- ALLOW superfluous 'e' , eg propane-1-ol ('e' is kept if followed by consonant)
- ALLOW absence of 'e', eg propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

- ALLOW absence of hyphens, eg propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: eg 1.2 OR spaces: 12
- DO NOT ALLOW eg 12

Locant numbers in formula must be correct

- DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

- ALLOW any order (as long as unambiguous), eg 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces
ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

Question		Answer	Marks	Guidance
1	(a)	$\mathrm{C}_{3} \mathrm{H}_{7} \checkmark$	1	ALLOW $\mathrm{H}_{7} \mathrm{C}_{3}$
	(b)	Saturated Only has (carbon to carbon) single bonds Hydrocarbon Contains (the elements) hydrogen and carbon only \checkmark	2	ALLOW does not contain any (carbon to carbon) double bonds ALLOW all of the carbon atoms are bonded to four other atoms DO NOT ALLOW contains hydrogen and carbon DO NOT ALLOW a mixture of carbon and hydrogen only DO NOT ALLOW hydrogen and carbon molecules only
	(c)		1	
	(d)	as branching increases the boiling point decreases OR the more branched the isomers of hexane are the lower the boiling point branched isomers have less surface (area) of contact OR branched fewer points of contact (than unbranched) (the more branched the) fewer van der Waals' forces OR (the more branched) has weaker van der Waals' forces OR Less energy required to break van der Waal's forces \checkmark	3	ALLOW ORA throughout First marking point must compare boiling point and branching for all three isomers Reference to just surface area / closeness of molecules is not sufficient ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases) DO NOT ALLOW VDW mark if answer states that these are between atoms or answer implies that these are bonds
	(e)	$\begin{aligned} & \mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{C}_{4} \mathrm{H}_{8} \\ & \mathrm{OR} \\ & \mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}+2 \mathrm{C}_{2} \mathrm{H}_{4} \end{aligned}$	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE state symbols

Question		Answer	Marks	Guidance
2	(a)	(enthalpy change for the) formation of one mole (of $\mathrm{P}_{4} \mathrm{O}_{10}$) \checkmark from (constituent) elements OR from $\mathrm{P}_{4} /$ phosphorus and O_{2} /oxygen	2	ALLOW energy required OR energy released ALLOW makes one mole of product/substance/molecule/ compound ALLOW made from P and O_{2} OR made from two elements IGNORE comments related to standard conditions
	(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=\mathbf{- 3 6 8}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks $\begin{aligned} & (+) 2984+(+) 6 \times 286 \text { OR }(+) 2984+(+) 1716 \text { OR (+)4700 } \\ & (-) 1267 \times 4 \text { OR }(-) 5068 \checkmark \\ & -368 \checkmark \end{aligned}$	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors. IGNORE sign IGNORE sign ALLOW ECF for enthalpy change of products - enthalpy change of reactants ALLOW for 2 marks: +368 cycle wrong way around OR - 1798 no $\times 6$ OR (+)3433 no x 4 OR - 3352 missing 2984 OR (+) 9768 product the wrong sign around OR (-) 9768 reactants the wrong sign ALLOW for 1 mark: (+)1798 no $\times 6$ and cycle wrong way around OR -3433 cycle wrong way around and not $\times 4$ OR (+)3352 missing 2984 and cycle wrong way around OR (+)2003 no x 6 or $x 4$ OR (+)449 missing 2984 and $x 4$ OR -4782 missing 2984 and $\times 6$ Note: There may be other possibilities.

Question		Answer	Marks	Guidance
(c)	$\mathrm{P}_{4}+5 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \checkmark$ Only the desired product is made \checkmark Second marking point can only be awarded if the equation is correct.	ALLOW there are no waste products OR there are no by-products OR there is only one product.		
DO NOT ALLOW it is an addition reaction				

	Quest		Answer	Marks	Guidance
3	(a)	(iv)	 A B C Correct structure for $\mathbf{A} \checkmark$ Correct structure for B Correct structure for $\mathbf{C} \checkmark$	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above \mathbf{A} and \mathbf{B} must clearly show cis and trans configuration eg A B Answers to A and B are interchangeable C: $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ALLOW $-\mathrm{C}_{2} \mathrm{H}_{5}$ group in A or B or $-\mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ in C DO NOT ALLOW $-\mathrm{C}_{3} \mathrm{H}_{7}$ group in C

Question			Answer	Marks	Guidance
3	(a)	(v)	carbon-carbon double bond Each carbon atom in the double bond is attached to (two) different groups/atoms \checkmark	2	IGNORE comments about rotation ALLOW carbon double bond ALLOW Each carbon atom of the double bond is attached to a H and an alkyl group DO NOT ALLOW functional groups for groups DO NOT ALLOW the carbon atoms are attached to different groups "Each carbon atom in the double bond" implies a carbon-carbon double bond for the first marking point
	(b)			2	Balancing mark can only be awarded if the equation has a correct skeletal formula for the product
	(c)			2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW $\mathrm{CO}_{2} \mathrm{H}$ for the carboxylic acid DO NOT ALLOW COH for aldehyde IGNORE names
			Total	15	

	uest	Answer	Marks	Guidance
4	(b)	$\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ added as product AND shown below the reactants \checkmark ΔH labelled with arrow pointing towards products or the product line if no products stated \checkmark E_{a} labelled correctly AND above reactants \checkmark	3	IGNORE state symbols for the products IF there is no $\boldsymbol{\Delta H}$ labelled then ALLOW -49 only as an alternative label for ΔH IF ΔH is labelled then IGNORE any numerical value DO NOT ALLOW $-\Delta H$ ALLOW this arrow even if it has a small gap at the top and bottom i.e. does not quite reach reactant or product line ALLOW (+) 225 only as an alternative label for E_{a} ALLOW arrows at both ends of activation energy line The E_{a} line must point to maximum (or near to the maximum) on the curve ALLOW this line even if it has a small gap at the top and bottom ie does not quite reach the maximum or reactant line ALLOW A_{E} or E_{a} for activation energy

Quest	Answer	Marks	Guidance
(c)	(+)49	1	DO NOT ALLOW -49
(d)	(+)274 \checkmark	1	DO NOT ALLOW -274 ALLOW answer to (c) +225 as ECF
(e)	(equilibrium position shifts) to the left \checkmark (Forward) reaction is exothermic OR reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat \checkmark The explanation mark is dependent on the correct shift of the equilibrium	2	ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' Note: ALLOW suitable alternatives for 'to left', eg: towards $\mathrm{CO}_{2} / \mathrm{H}_{2}$ OR towards reactants OR in backward direction OR in reverse direction OR decreases yield of $\mathrm{CH}_{3} \mathrm{OH}$ /products IGNORE responses in terms of rate
(f)	(equilibrium position) shifts to the left \checkmark Right-hand side has fewer (gaseous) moles/molecules ORA The explanation mark is dependent on the correct shift of the equilibrium	2	ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' Note: ALLOW suitable alternatives for 'to left', eg: towards $\mathrm{CO}_{2} / \mathrm{H}_{2}$ OR towards reactants OR in backward direction OR in reverse direction OR decreases yield of $\mathrm{CH}_{3} \mathrm{OH}$ /products IGNORE responses in terms of rate ALLOW four moles on the left and two moles on the right ALLOW more moles of reactants or fewer moles of products ASSUME "goes the side with more gas molecules" implies from equation that more molecules on the left OR "goes to side with fewer gas molecules" implies from equation that fewer molecules are on the right

Quest	Answer	Marks	Guidance
(g)	Adsorption of reactants OR adsorption of gases OR H_{2} and CO_{2} attached to surface \checkmark Bonds weaken in reactants OR chemical reaction OR activation energy decreases \checkmark Desorption of products OR desorption of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{OH} \checkmark$	3	ALLOW CO_{2} and H_{2} (weakly) bonded to surface OR reactants bond to surface $\mathbf{O R} \mathrm{CO}_{2}$ and H_{2} form temporary bonds with the catalyst DO NOT ALLOW absorption ALLOW bonds weaken in H_{2} OR bonds weaken in CO_{2} OR C=O bonds weaken OR bonds break and new bonds made in product OR $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{OH}$ made ALLOW products leave the surface/catalyst OR $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{OH}$ no longer bonded to surface/catalyst ALLOW deadsorption OR adsorb from for desorption ALLOW diffuse away for desorption
	Total	15	

Question		Answer	Marks
5	(a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 90\% award 3 marks amount of dichloroethane $=\frac{19800000}{99.0}$ OR 200000 (mol) OR $2 \times 10^{5}(\mathrm{~mol}) \checkmark$ amount of chloroethene $=\frac{11250000}{62.5}$ OR $180000(\mathrm{~mol})$ OR $1.8 \times 10^{5}(\mathrm{~mol}) \checkmark$ Calculates percentage yield $=\frac{180000}{200000} \times 100=90 \% \checkmark$	

Guidance ECF credit possible using working below.

ALLOW approach based on mass for 2nd and 3rd

 marksTheoretical mass of chloroethene $=200000 \times 62.5$
OR $12500000(\mathrm{~g})$ OR $1.25 \times 10^{7}(\mathrm{~g}) \checkmark$
Calculates percentage yield $=\frac{11250000}{12500000} \times 100=90 \% \checkmark$
ALLOW approach based on grams rather than tonnes:
$n($ dichloroethane $)=\frac{19.80}{99.0}$ OR $0.2(\mathrm{~mol}) \checkmark$
$n($ chloroethane $)=\frac{11.25}{62.5}$ OR $0.18(\mathrm{~mol})$
OR theoretical mass chloroethane $=0.2 \times 62.5$ OR $12.5 \mathrm{~g} \checkmark$ $\%$ yield $=\frac{0.18}{0.20} \times 100=90 \%$ OR $\frac{11.25}{12.5} \times 100=90 \% \checkmark$

ALLOW ECF throughout from wrong M_{r} value(s) with final $\%$ yield to 2 or more significant figures
DO NOT ALLOW final mark for an answer above 100\%

Note:

If this is the only working seen award no marks
ie $\frac{11.25 \times 10^{6}}{19.80 \times 10^{6}} \times 100=56.81 \%$

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :---: | :---: | :--- |
| (d) | (i) | React with an alkali
 OR react with a base/carbonate
 OR Bubble through water (to make HCI(aq))
 OR dissolve in water \checkmark | 1 | ALLOW react with a named alkali or base eg calcium
 carbonate, calcium hydroxide, magnesium oxide, ammonia
 ALLOW an appropriate chemical formula
 IGNORE use of gas scrubbers |
| (ii) | Sort and recycle \checkmark
 Organic feedstock OR cracked \checkmark | 2 | ALLOW separate and recycle or sorting and remoulding
 ALLOW use for the production organic compounds
 OR synthesis gas | |
| ALLOW the production of plastics or monomers or new
 polymers | | | | |
| | (iii) | (Bio) degradable (polymers) OR compostable (polymers)
 OR soluble (polymers) OR photodegradable (polymers) \checkmark | 1 | IGNORE a named polymer if degradable
 DO NOT ALLOW any addition polymer eg PTFE |

Question			Answer	Marks	Guidance
6	(a)		Bond breaking absorbs energy AND bond forming releases energy \checkmark More energy released than absorbed \checkmark The second marking point is dependent on the correct identification of the energy changes during bond breaking and bond making	2	ALLOW bond breaking is endothermic AND bond forming is exothermic DO NOT ALLOW bond forming requires energy ALLOW more energy is released when the bond in the products are formed than is required to break the bonds in the reactants ALLOW exothermic change transfers more energy than endothermic change OR bond forming transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' OR more energy associated with bond making than with bond breaking IGNORE reference to strong and weak bonds IGNORE reference to number of bonds broken or made IGNORE enthalpy of products is less than enthalpy of reactants
	(b)	(i)	($\mathrm{C}=\mathrm{O}$) bond vibrates (more) OR bond bends (more) OR bond stretches (more)	1	IGNORE molecule vibrates/rotates "It" refers to the molecule and is insufficient DO NOT ALLOW any reference to bond breaking. DO NOT ALLOW a stated bond if not present in CO_{2} eg C-O, C-H

Question	Answer	Marks	Guidance
(ii)	Any two from: (injected) deep into the oceans / sea \checkmark (Stored) in geological formations OR (stored) deep in rocks OR (stored) in old mines OR (stored) in old oil wells OR old gas fields \checkmark (Stored) by reaction with metal oxides OR reaction to form (solid) carbonates OR (stored) as a carbonate OR equation to show formation of metal carbonate \checkmark	2	DO NOT ALLOW reference to carbon being stored - the answer must either refer to carbon dioxide or not mention the name of the stored substance. Assume "it" refers to CO_{2} DO NOT ALLOW dumping waste at the bottom of the sea ALLOW on the sea-bed DO NOT ALLOW dissolve CO_{2} in the sea OR (stored) in ocean DO NOT ALLOW geographical formations ALLOW stored under the sea (bed) ALLOW pumped into oil wells to force last bit of oil out DO NOT ALLOW buried underground DO NOT ALLOW react with metals to form carbonates IGNORE mineral storage

Questi	Answer	Marks	Guidance
(d)	Catalyst lowers the activation energy (because of a different reaction pathway) Diagram of Boltzmann distribution axes labelled (number of) molecules and energy \checkmark Greater proportion of molecules with energy above activation energy with catalyst \checkmark	5	Can be scored from the diagram by correctly labelling $E_{\text {a cat }}$ closer to the origin than E_{a} Boltzmann distribution must start at origin AND must not touch x-axis at high energy DO NOT ALLOW Boltzmann distribution mark if two curves drawn DO NOT ALLOW Boltzmann distribution curve bending upwards at higher energy ALLOW particles instead of molecules DO NOT ALLOW the first use of atoms but credit atoms if used in a subsequent marking point DO NOT ALLOW enthalpy on x-axis instead of energy ALLOW more molecules with energy above activation energy (with a catalyst) OR more molecules overcome the activation energy (with a catalyst) OR more molecules have enough energy to react (with a catalyst) OR more molecules are able to react at lower energies More collisions OR more frequent collisions are not sufficient
	Total	12	

Question

Question	Answer	Marks	Guidance
	ALTERNATIVE APPROACH The Candidate who reacts with KOH followed by HBr - Award all marks for the nucleophilic substitution mechanism as per the marking scheme - You can award all marks for the electrophilic addition mechanism; however the product will be one of the following: - The mechanism will be the same except the -Cl will now be replaced by -OH at every stage		
	Total	12	

Question		Answer	Marks	Guidance
8		IR spectrum (absorbance between) $3200-3550 \mathrm{~cm}^{-1}$ indicates -OH AND X is an alcohol	1	LOOK ON THE SPECTRUM for labelled absorbance which can be given credit ALLOW an absorbance within the range 3100 to $3700 \mathrm{~cm}^{-1}$ from the spectrum. Answer must give - OH and alcohol for the mark. IGNORE phenol DO NOT ALLOW carboxylic acid (there is no carbonyl group present in the spectrum)
		$\begin{aligned} & \text { Formula } \\ & \text { mole ratio C : H: O } \\ & \frac{0.600}{12}: \frac{0.133}{1.0}: \frac{0.267}{16} \text { OR } 0.0500: 0.133: 0.0167 \\ & \frac{0.05}{0.0167}: \frac{0.133}{0.0167}: \frac{0.0167}{0.0167} \text { OR } 3: 8: 1 \mathrm{OR} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O} \end{aligned}$ Candidate links $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ to 60 such as $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ has $\mathrm{Mr}_{\mathrm{r}} 60$ $\mathrm{OR} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ has $\mathrm{m} / \mathrm{z}=60 \checkmark$	3	Must be a clear link between the formula and the $M_{\mathrm{r}} \mathbf{O R ~ m} / \mathrm{z}$ ALLOW evidence of M_{r}, eg $(12 \times 3)+(8 \times 1)+16 ; \quad 36+8+16=60$ ALLOW alternative approach for empirical formula and evidence that 60 is equal to $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ $M_{r}=60$ $\begin{array}{ll} \begin{array}{l} \text { Carbon } \\ 60 \times \frac{60}{100}=36 \end{array} & \begin{array}{r} \text { Hydrogen } \\ 60 \times \frac{13.3}{100} \end{array}=8 \\ 36 / 12=3 \mathrm{C} & 8 / 1=8 \mathrm{H} \end{array}$ $36+8=44 \quad 60-44=16 \text { so } 1 \mathrm{O} \quad \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

Question		Answer	Marks	Guidance $\mathbf{8}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

